242 268 JMENTATION PAGE Femperond

A 10 average 1 hour per response. including the time for reviewing) i isting data gathering and maintaining the data
l ‘ \ ‘] l uugardmm-bumonwmuoovamolm'aspodolmneohumdﬂmmmmmmlwrmmwIow-nnpn
H“m ‘\l “‘“ “\‘ “““ Jeports, 1215 Jetierson Davis Highway, Sulte 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory Affairs, Office of
cmmaes woL wYLT (LEAVE ulank) “~12. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 17 May 1991 to
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS -

Ada Compiler Validation Summary Report: U.S. NAVY, AdaVAX, Version 5.0, (/NO
OPTIMIZE) VAX 8350 (Host & Target), 91051751.11163

6. AUTHOR(S) j‘T

National Institute of Standards and Technology 3 t

Gaithersburg, MD F o TSR BN O :}"3*"»"

USA z ' : -
[7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES; . — : "8 PERFORMING ORGANIZATION

National Institute of Standards and Technology ~ *. & . ;;’\ #, | REPORT NUMBER

National Computer Systems Laboratory = L N NISTOOUSNS10_2__1.11

Bldg. 255, Rm A266

Gaithersburg, MD 20899 USA
3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY |

Ada Joint Program Office

United States Department of Defense
Pentagon, RM 3E114

Washington, D.C. 20301-3081

REPORT NUMBER

T T Y T —
11. SUPPLEMENTARY NOTES
‘ ‘1£ -,LL e

P e s e (,\,_u{u /J—(\ ’[—7 L dl—oa“l") L‘J’&(zy'l J)-Q" k’%k’)CL‘LL(L
Kee 4D iyl i T

I —————
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
U.S. NAVY, AdaVAX, Version 5.0, Gaithersburg, MD, (/NO OPTIMIZE) VAX 8350 (Host & Target), ACVC 1.11

91-15061
PRI

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550) Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

\ t——l!—‘!%ﬁrﬂ-r“

— i

YL odaiux 1-be

AVF Control Number: NIST90USN510 2 1.11

DATE COMPLETED
BEFORE ON-SITE: 1991-04-05
AFTER ON-SITE: 1991-05-17
REVISIONS: 1991-07-24

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910517S1.11163
U.S. NAVY
AdavaX, Version 5.0 (/NO_OPTIMIZE)
VAX 8350 => VAX 8350Q

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899 ’

.-
> Y
1

DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

Certificate Awardee: U.S. NAVY

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: AdaVAX, Version 5.0 (/NO_OPTIMIZE)

Host Computer System: VAX 8350, running VAX/VMS Version
5.3
Target Computer System: VAX 8350, running VAX/VMS Version
5.3
Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-3TD-1815A ISO
8652-1987 in the implementation listed above.

- i
v A !

Y JN s) k '
AR S P “n r
Ll T L Ll AN
Customer Signature Date
Company U.S. Navy '
Titlerr 0 - - - A
: ' g ! , A N) !
T e A o =
Certificate Awardee Signature Date |

Company U.S. Navy
Title

AVF Control Number: NIST90USN510 2 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 1991-05-17.

Compiler Name and Version: AdaVAX, Version 5.0 (/NO _OPTIMIZE)

Host Computer System: VAX 8350, running VAX/VMS Version
5.3

Target Computer System: VAX 8350, running VAX/VMS Version
5.3

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
910517S1.11163 is awarded to U.S. NAVY. This certificate expires
on 01 March 1993.

This report has been reviewed and is approved.

AdalValida¥ion Facility
Dr. David K. Mr. L. Arriold Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

) M",g—éﬁﬂ/
y /g S A G A

a

Ada Validation Organization Cj;7§da Joint Program Office
Director, Computer & Software Dr. John Solomond
Engineering Division Director

Institute for Defense Analyses Department of Defense

Alexandria VA 22311 Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 . . « +« ¢ « ¢ o s o o o o o « =
INTRODUCTION o v e e o e & a
1.1 USE OF THIS VALIDATION SUMMARY
1.2 REFERENCES . . « « « & « « + .
1.3 ACVC TEST CLASSES . .« . « « .
1.4 DEFINITION OF TERMS

CHAPTER 2 o o e e o e e 4 e .
IMPLEMENTATION DEPENDENCIES e o e . .

2.1 WITHDRAWN TESTS

2.2 INAPPLICABLE TESTS

2.3 TEST MODIFICATIONS

CHAPTER 3 e e s e e e .
PROCESSING INFORMATION e e e e s .

3.1 TESTING ENVIRONMENT . .

3.2 SUMMARY OF TEST RESULTS

3.3 TEST EXECUTION

e s o o o
. o & s o
.

APPENDIX A . . . D
MACRO PARAMETERS e s e e s e e s e o .

APPENDIX B . . . e« o e e s e e e
COMPILATION SYSTEM OPTIONS « e e e e e
LINKER OPTIONS . . . « ¢ & o o o o o o &

APPENDIX C e e e o
APPENDIX F OF THE Ada STANDARD o e . e

.

REPORT

¢« o & o 0

e & o e

e o & & 0

H)Jﬁ‘TFJH
WP PP

DV N
1
B

WWwwww
[
N

0
(e

0Q wow >
Ny

[
-

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide ([UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questicns regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to: . ’

Ada Validation Organization

Computer and Software Engineering Division

Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming langquage,
ANST/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Progn] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

{UG89] Ada Compiler Validation Capability User's Guide, 21 June
1s889.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada 1library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some conmpiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT12 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
coperating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values =-- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modificaticns, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementaticn are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the praceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2

1-2

and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada
Validation
Facility (AVF)

Ada

Validation
Organization
(AVO)
Compliance of
an Ada
Implementation

Computer
System

Conformity

The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

The means for testing compliance of Ada
implementations, Validation consisting of the
test suite, the support programs, the ACVC
Capability user's guide and the template for
the validation summary (ACVC) report.

An Ada compiler with its host computer system and
its target computer systenmn.

The part of the certification body which carries
out the procedures required to establish the
compliance of an Ada implementation.

The part of the certification body that provides
technical guidance for operations of the Ada
certification system.

The ability of the implementation to pass an ACVC
version.

A functional unit, consisting of one or more
computers and associated software, that uses
commen storage for ali or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process or service of
all requirements specified.

1-3

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementaticn.

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing or by
registration [Pro9o0].

The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incocrrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneocus
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The puklication date for
this list of withdrawn tests is 91-05-03.

E28005C B28006C C34006D C355081 C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D B83026B C83026A C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CCi223A BCl226A CCl1226B BC3009B
BD1B0OZB BD1BO6A AD1BOSA BD2A02A CD2A21E CD2A23E
CD2A32Aa CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A CD4022A CD4022D CD4024B CcD4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111cC
CE311le6A CE3118A CE34118B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests)
C35706F..Y (20 tests)
C35708F..Y (20 tests)

C35705F..Y (20 tests)
C35707F..Y (20 tests)
C35802F..Z (21 tests)

C45241F..Y (20 tests)
C45421F..¥ (20 tests)
C45524F..2 (21 tests)
C45641F..Y (20 tests)

C45321F..Y (20 tests)
C45521F..2Z (21 tests)
C45621F..2 (21 tests)
C46012F..2 (21 tests)

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C453048B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, <C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_ INTEGER:; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LCNG_FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, there is no such type.

CAS624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE_OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than
DURATION; fcr this implementation, there is no such type.

C96005B checks for values of type DURATION'BASE that are outside
the range of DURATION; for this implementation, there are no such
values.

CD1009C checks whether a length clause can specify a non-default
size for a floating-poin* type; this implementation does not
support such sizes.

CD2A84A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use length
clauses tc specifv non-default sizes for access types; cthis
implementation does not support such sizes.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with

2=2

discriminants without defaults; these instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

The tests listed in the following table are not applicable because
the given file operations are supported for the given combination
of mode and file access method.

Test File Operation Mode File Access Methcd
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT_FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL IO
CE21020 RESET IN_FILE SEQUENTIAL_ IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE210ZR OPEN INOUT_FILE DIRECT_IO
CE2102S RESET INOUT_FILE DIRECT_IO
CE2102T OPEN - IN_FILE DIRECT IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE ===v==-- TEXT_IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

The tests listed in the following table are not applicable because
the given file operations are not supported for the given
combination of mode and file access method.

Test File Operation Mode File Access Method
£2105A CREATE IN_FILE SEQUENTIAL IO
CE2105B CREATE IN_FILE DIRECT_ IO
CE3109A CREATE IN _FILE TEXT_IO
CE2107B..D (3 tests), CE2110B, and CE2111D check operations on

sequential files when multiple internal files are associated with
“he same external file and one or more are open fcr writing:;
JSE_ERROR is raised when this association is attempted.

CE2107E and CE2107L check operaticns on direct and sequential files

when files of both kinds are associated with the same external
file; USE_ERRCOK is raised when this associaticn is attempted.

2-3

CE2107G..H (2 tests), CE2110D, and CE2111H check operations on
direct files when multiple internal files are associated with the
same external file and one or more are open for writing; USE_ERROR
is raised when this association is attempted.

CE2203A checks that WRITE raises USE_ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an

external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111B, CE3111D..E (2 tests), CE31148B, and CE3115A check
operations on text files when multiple internal files are

associated with the same external file and one or more are open for
vriting; USE_ERROR is raised when this association is attempted.

CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the
page number exceeds COUNT'LAST. For this implementation, the value
of COUNT'LAST is greater than 150000 making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 41 tests.
The following tests were split into two or mocre tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22004A B23004A B24005A B24005B B28003A
B33201C B33202C B33203C B33301B B37106A B37301T
B38003A B38003B B3800%A B38009B B44001A B44004A
B54A01L BS5A02A B61005A B85008G B&5008H B950€3A
BO97103E BB1006B BC1102A BCl1lo09%9aAa BC1109B BC1109C
BC1109D - BC1201lF BC1201G BC1201H BC1201I BC1201J
BC1201L BC3013A BE2210A BE2413A

"PRAGMA ELABORATE (REPORT)" has been added at zppropriate points in
order to solve the elaboration prcblems for:

C83030C (C86007A

C34005P and C34005S were graded passed by Test Modification as
directed by the AVO. These tests contain expressions of the form
"I - X'FIRST + Y'FIRST", where X and Y are of an array type with a
lower bound of INTEGER'FIRST; this implementation recognizes that
"X'FIRST + Y'FIRST" is a loop invariant and so evaluates this part
of the expression separately, which raises NUMERIC_ERROR. These

2-4

tests were modified by inserting parens to force a different order
of evaluation (i.p., to force the subtraction to be evaluated
first) at lines 187 and 262/263, respectively; those modified lines
are:

[C34005P, line 187]
IF NOT EQUAL (X (I), ¥ ((I - X'FIRST) + Y'FIRST)) THEN
[C34005S, lines 261..4 (only 262 & 263 were modified))
IF NOT EQUAL (X (I, J),

Y ((I - X'FIRST) + Y'FIRST,

(T = X'FIRST(2)) +
Y'FIRST(2))) THEN

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information abcut. this
Ada implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity
Code 81, Room 301D
200 cCatalina Blvd.
San Diego, California 92147
619-553-9447

For a point of contact for sales information about this Ada
implementation system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test cf the custcmized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
(Pro9o0].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3695
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 381
d) Non-Processed I/0 Tests . 0
e) Non-Processed Floating-Point

Precision Tests 0

3-1

f) Total Number of Inapplicable Tests 381 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3

TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 381
tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the wvalidation team for
prccessing. The contents of the magnetic tape were loaded
directiy onto the host computer.

After the test files were loaded onto the host computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/
target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B
for a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

FOR /NO_OPTIMIZE the options were:

/SUMMARY /NO_TRACE_BACK /NO_OPTIMIZE ,SOURCE
/0UT=<filename>

FOR /OPTIMIZE the options were:

/SUMMARY /NO_TRACE_BACK /OPTIMIZE /SOURCE
/0UT=<filename>

The options invoked by default for validation testing during

this test were:

3-2

FOR /NO_OPTIMIZE the options were:

/NO_MACHINE_CODE /NO_ATTRIBUTE /NO_CROSS_REFERENCE
/NO_DIAGNOSTICS /NO_NOTES /PRIVATE /LIST
/CONTAINER_GENERATION /CODE_ON_WARNING /NO_MEASURE /DEBUG
/ CHECKS

FOR /OPTIMIZE the options were:

/NO_MACHINE_CODE /NO_ATTRIBUTE /NO_CROSS_REFERENCE
/NO_DIAGNOSTICS /NO_NOTES /PRIVATE /LIST
/CONTAINER GENERATION ,/CODE_ON_WARNING /NO MEASURE ,/DEBUG
/CHECKS

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG89]. The parameter values are
presented in two tables. The first table lists the values
that are defined in terms of the maximum input-line length,
which is | the value for $MAX IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN_LEN . 120

$BIG_ID1 (1L..V=1 => 'A'", V => '1"')

$BIG_ID2 (1..V=1 => 'A', V => 12")

$BIG_ID3 (1..v/2 => 'A') & '3' & (1..V=-1=-V/2 => ‘A")
$BIG_ID4 (1..V/2 => *A') & "4 & (1..V-1-V/2 => 'A')
$BIG_INT LIT (1..V=3 => '0') & "298"

$BIG_REAL LIT (1..V=-5 => '0') & "690.0"

$BIG_STRING1 MY g (1..V/2 => 'A') & '

$BIG_STRING2 twr g (1..V-1=-V/2 => ‘'A') & '1' & '™
$BLANKS (1..V=20 => ' ')

$MAX_LEN_INT BASED_LITERAL
"2:“ & (1..V-5 => lol) & "11:"

$SMAX LEN REAL_BASED_LITERAL
"16T" & (1..V=7 => '0') & "F.E:"

$MAX STRING_LITERAL '"' & (1..V=2 => 'A') & '"!

The following table contains
macro parameters.

Macro Parameter

.

the values for the remaining

Macro Value

D . D T TS P D D D A W D G W S T T W G W WD D D G e D D afe Gw S T WD e A A D W S D G e AP G D D e W -

$SACC_SIZE
SALIGNMENT
$COUNT_LAST
$DEFAULT MEM SIZE
$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME

$DELTA_DOC

SENTRY_ADDRESS

SENTRY_ADDRESS1
$ENTRY_ADDRESS2

$FIELD_LAST

SFILE_TERMINATOR

$FIXED_NAME

SFLOAT_NAME

$FORM_STRING

$FORM_STRING2
$GREATER_TEAN_DURATION
SGREATER_THAN DURATION_ BASE_LA
SGREATER_THAN FLOAT BASE_LAST
SGREATER_THAN_ FLOAT SAFE_LARGE
$GREATER_THAN_SHORT_FLOAT_ SAFE

SHIGH_ PRIORITY

2 147_483_647
1073741823

8

ADAVAX

0.000_000_000_465 661 287 307_
739 257 _812_¢

164404#
16480%
1641004
32 767
-
NO_SUCH_TYPE_AVAILABLE
NO_SUCH TYPE_AVAILABLE
o
"CANNOT RESTRICT FILE CAPACITY"
75_000.0
ST 131 _073.0
1.80141E+38
1.0E303
_LARGE 1.0E308

15

SILLEGAL EXTERNAL FILE NAME1l BADCHARA@.-~!

$ILLEGAL _ _EXTERNAL _ FILE_NAME.?2
MUCH_TOO_LONG_NAME FOR_A_FILE_UNDER _VMS_SO_THE_SO_THERE

SINAPPROPRIATE LINE_ LENGTH
SINAPPROPRIATE PAGE_LENGTH
SINCLUDE_PRAGMAl

$INCLUDE PRAGMA2

256
-1
PRAGMA INCLUDE ("A28006D1.TST")

PRAGMA INCLUDE ("B28006F1.TST")

$INTEGER FIRST -32768
$INTEGER LAST 32767
SINTEGER_LAST PLUS_1 32768
$INTERFACE_LANGUAGE ASMVAX_JSB
$LESS_THAN DURATION -75000.0
$LESS_THAN DURATION BASE_ FIRST -131073.0
SLINE TERMINATOR '
$LOW_PRIORITY 1

SMACHINE CODE_STATEMENT
$MACHINE CODE_TYPE
SMANTISSA_DCC
$MAX_DIGITS

$MAX_INT
SMAX_INT_PLUS_1
$MIN_INT

SNAME

$SNAME_LIST

SNAME SPECIFICATION1

BYTE_OP_CODE' (OP=>NOP) ;
BYTE

31

9

2147483647

2147483648

-2147483648
NO_SUCH_TYPE_AVAILAELE

ADAVAX, ADA_L, ADA M

ALSNSTEST: [ALSN_TESTS.ACVC.TESTACVCVAX.RUNNING]X2120A.:1

S$NAME_SPECIFICATION2
ALSNSTEST: [ALSN_TESTS.ACVC.TESTACVCVAX.RUNNING]X2120B.;1

$NAME_SPECIFICATION3
ALSNSTEST: {ALSN_TESTS.ACVC.TESTACVCVAAX.RUNNING]X3119A.;1

SNEG_BASED_INT 164#FFFFFFFE#

$SNEW_MEM_SIZE 1073741823

$NEW_STOR_UNIT 8

SNEW_SYS_NAME ADA_L

$PAGE_TERMINATOR ASCII.FF

SRECORD_DEFINITION RECORD LWORD_1:LONG_WORD;
LWORD_2:LONG_WORD; END RECORD;

SRECORD_NAME QUADWORD

STASK_SIZE 1624

$TASK_STORAGE_SIZE 1024

$TICK 0.01

SVARIABLE ADDRESS 16#0020%

$VARIABLE_ADDRESS1 16#0024%

SVARIABLE ADDRESS2 16#0028%#

$YOUR_PRAGMA ‘ TITLE ("THIS IS AN ALS/N ACVC
TITLE")

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

ALS/

N Reference Handbook Version 4.5
29 March 1991

Section 9

Compiler Options

................ ——— - - e e s o e e 2 e e e O e o o o

Option Function |

MEASURE Generates code to monitor execution
frequency at the subprogram level for
the current unit. Default: NO_MEASURE

NO_CHECKS NO_CHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.

Default: CHECKS

NO_CODE_ON_WARNING
NO_CODE_ON_WARNING means no code is
generated when there is a diagnostic
of severity WARNING or higher.
CODE_ON_WARNING generates code
only if there are no diagnostics
of a severity higher than WARNING.
Default: CODE_ON_WARNING

NO_CONTAINER_GENERATION
NO_CONTAINER_GENERATION means that no
container is produced even if there
are no diagnostics.
CONTAINER_GENERATION produces a
container if diagnostic serverity
permits.
Default: CONTAINER_GENERATION

Table 5-la - Special Processing Options

Version 4.5 ALS/N Reference Handbook
29 March 19951

NO_DEBUG If NO_DEBUG is specified, only that
information needed to link, export
and execute the current unit is
included in the compiler output.

With the DEBUG option in effect,
internal representations and
additional symbolic information are
stored in the container.

Default: DEBUG

NO_TRACE_BACK Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACE_BACK

OPTIMIZE Enables global optimizations in
accordance with the optimization
pragmas specified in the source
program. If the pragma OPTIMIZE is
not included, the optimizations
emphasize TIME over SPACE.

When NO_OPTIMIZE is in effect, no
global optimizations are performed,
regardless of the pragmas specified.
Default: NO_OPTIMIZE

Table 9-1b - Special Processing Options (Continued)

O
[}

02

ALS/N Reference Handbook Version 4.5

ATTRIBUTE

CROSS_REFERENCE

DIAGNOSTICS

MACHINE_CODE

NOTES

NO_PRIVATE

SOURCE

SUMMARY

29 March 1991

Produces a Symbol Attribute Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS_REFERENCE are specified.)
Default: NO_ATTRIBUTE

Produces a Cross-Reference Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS_REFERENCE are specified.)
Default: NO_CROSS_REFERENCE

Produces a Diagnostic Summary Listing.
Default: NO_DIAGNOSTICS

Produces a machine code listing if
code is generated. Code is generated
when CONTAINER GENERATION option is

in effect and (1) there are no
diagnostics of severity ERROR, SYSTEM
or FATAL, and/or (2) NO_CODE_CN_WARNING
option is in effect and there are no
diagnostics of severity higher than
NOTE. Default: NO_MACHINE_CODE

Includes diagnostics of NOTE severity
level in the Source Listing.
Cefault: NO_NOTES

Excludes listing of Ada statements in
private part if a Source Listing is
produced. Default: PRIVATE

Produce listing of Ada source
statements. Default: NO_SOURCE

Produce a Summary Listing; always
produced when there are errors in the
compilation. Default: NO_SUMMARY

Table 9-2 -~ Listing Control Options

9-03

Version 4.5 ALS/N Refererce Handbook
29 March 1991

MSG Sends error messages and the
Diagnostic Summary Listing to the
file specified. The default is to
send error messages and the Diagnostic
Summary Listing to Message Output
(usually the terminal).

ouT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table 9-3 -~ Control_Part (Redirection) Options

LINKER OPTIONS

The linker options ¢« this Ada implementation, as described in this
Appendix, are provideld by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation
and not to this report.

ALS/N Reference Handbook Version 4.5
29 March 1991

Section il

Linker Options

4o cmmm -— —————mmeeee e ——— ————— -——

| option Function

DEBUG Produces a linked_container to be
debugged. Default: NO_DEBUG.

MEASURE Produces a linked_container to be
analyzed. Default: NO_MEASURE

)/0_SEARCH Limits the contents of the linked
container to those units explicitly
specified in the UNITLIST.

Default: SEARCH.

PARTIAL Produces an incomplete
~ linked_container with unresolved
references. Default: NO_PARTIAL.

Table 11~-1 - LNKVAX Linker Special Processing Options

11-01

Version 4.5
29 March 1991

no cption
ELAB_LIST
SYMBOLS

UNITS

our

ALS/N Reterence Handbook

Linker Summary listing, always produced
unless diagnostics prevent its generation.

Generates an elaboration order listing.
Default: NO_ELAB_LIST.

Produces a Linker symbols listing.
Default: NO_SYMBOLS.

Produces a Linker units listing.
Default: NO_UNITS.

Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table 11-3 - Control_Part (Redirection) Options

11-02

ALS/N Reference Handbook

ACCOUNTING

DEBUG

DEBUG_SYMBOLS

MEASURE

b r e ——-——--—---

29 March

Section 12

Exporter Options

Causes the amount of CPU time and
wall clock time used by the program
to be reported at program termination
to message output.

Default: NO_ACCOUNTING

Produces a load module that can be
debugged by the ALS/N Symbolic
Debugger. Default: NO_DEBUG

Produces a file of external symbols
suitable for input to the VAX/VMS
Debugger. Default: NO_DEBUG_SYMBOLS

Produces a load module that includes
the invocation of frequency and
statistical analyzer.

Default: NO_MEASURE

- e e D P . - - D - TP D - - WD - - e

Table 12-1 - Special Processing Options

Version 4.5

1991

12-01

Version 4.5 _ ALS/N Reference Handbook
29 March 1991

Rt T ettt T T P +

| option Function |

e -_— ettt +
no option Exporter Summary Listing is always

produced unless diagnostics prevent
1ts generation.

MAP Produces a program sections map
listing that summarizes the
executable image. Default: NO_MAP

SYMBOLS Produces a list of external symbol
descriptor information for external
definitions contained in the object
module. Default: NO_SYMBOLS

et T T L L S e T T R +

| option Function |

e e T +
MSG Sends error messages to the file

specified. The default is to send
error messages to Message Output
(usually the terminal).

ouT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table 12-3 - Control_Part (Redirection) Options

12-02

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwises, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32_768 .. 32_767;
type LONG INTEGER is range =2 _147 483 _648
type FLOAT is digits 6 range
-(2#0.1111 1111 1111 1111 1111 14E127)
(2#0.1112 1111 1111 1111 1111 _1#E127):
type LONG_ FLOAT is digits 9 range
- (240, 1111 1111 1111_1111_ 1111 1111 1111 _111#E127)
(2#0. 1111 1111 1111 1111 1111 1111 1111 1113E127):
type DURATION is delta 2.0 ** (=14} range
=131 _C72.0 .. 131 _072.0 = 2.0 **x (=14);

.. 2_147_483_647;

end STANDARD;

ALS/N Reference Handbook Version 4.5
29 March 1991

Appendix F
The Ada Language for the VAX Target

The source language accepted by the compiler is Ada, as
described in the Military Standard, Ada Programming Language,
ANSI/MIL-STD-1815A-1983, 17 February 1983 ("Ada Language
Reference Manual®}.

The Ada definition permits certain implementation
dependencies. Each Ada implementation is required to supply a
complete description of its dependencies, to be thought of as
Appendix F to the Ada Language Reference Manual. This section is
that description for the VAX/VMS target.

F.1 Optiohs

There are several compiler options provided by all ALS/N
Compilers that directly affect the pragmas defined in the Ada
Language Reference Manual. These compller options currently
include the CHECKS and OPTIMIZE options that affect the SUPPRESS
and OPTIMIZE pragmas, respectively. A complete list of ALS/N
Compiler options can be found in Section 9.

The CHECKS option enables all run-time error checking for the
source file being compiled, which can contain one or more
compilation units. This allows the SUPPRESS pragma to be used in
suppressing the run-time checks discussed in the Ada Language
Reference Manual, but note that the SUPPRESS pragmas must be
applied to each compilation unit. The NO_CHECKS option disables
all run-time error checking for all compilation units within the
source file and is equivalent to SUPPRESSing all run-time checks
within every compilation unit.

The OPTIMIZE option enables all compile~time optimizations
for the source file being compiled, which can contain one or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
performed, but note that the OPTIMIZE pragma must be applied to
each compilation unit. If the OPTIMIZE pragma is not present,
the ALS/N Compiler’s Global Optimizer tends to optimize fcr TIME
over SPACE. The NO_OPTIMIZE option disables all compile-time
optimizations for all compilation units within the source file
regardless of whether or not the OPTIMIZE pragma is present.

F.1 oOptions F-01

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.2 Pragmas

Both implementation-defined and Ada language-defined pragmas
are provided by all ALS/N Compilers. The syntax defined in the
Ada Language Reference Manual allows pragmas as the only element
in a compilation, before a compilation unit, at defined places
within a compilation unit, or following a compilation unit. The
AL?{N Compilers associates pragmas with compilation units as
follows: '

a. If a pragma appears before any compilation unit in a
compilation, it will affect all following compilation units,
as specified below, and in the Ada Language Reference Manual.

b. If a pragma appears inside a compilation unit, it will be
assocliated with that compilation unit, and in listings
associated with that compilation unit as described in the Ada
Language Reference Manual, or in this document.

c. If a pragma focllows a compilation unit, it will be associated
with the preceding compilation unit, and the effects of the
pragma will be found in the container of that compilation
unit, and in listings associated with that container.

The pragmas MEMORY_SIZE, STORAGE_UNIT, and SYSTEM_NAME are
described in Section 13.7 of the Ada Language Reference Manual.
They may appear only at the start of the first compilation when
creating a new program library. 1In the ALS/N, however, since
program libraries are created by the Program Library Manager and
not by the compiler, the use of these pragmas is obviated. 1If
they appear anywhere, a diagnostic of severity level WARNING is
generated.

F.2.1 Language-defined Pragmas
The following notes specify the language-required definitions

of the predefined pragmas. Unmentioned lanquage-defined pragmas
are implemented as defined by the Ada Language Reference Manual.

F-02 F.2.1 Language-defined Pragmas

ALS/N Reference Handbook Version 4.5
29 March 1991

pragma INLINE (subprogram_name) ;

There are three instances in which the INLINE pragma is
ignored. Each of these cases produces a warning
message that states the INLINE did not occur.

a. If a call to an INLINE subprogram is compiled
before the actual body of the subprogram has been
compiled, a routine call is made instead.

b. If the compilation unit contalnlng the INLINE
subprogram depends on the compilation unit of its
caller, a routine call is made instead.

c. If an immediately recursive subprogram call is made
within the body of the INLINE subprogram, the
pragma INLINE is ignored entirely.

pragma INTERFACE {language_name, subprogram_name) ;
Two language_names will be recognized and implemented:
ASMVAX_JSB, and ASMVAX_CALLS. '

The language_name ASMVAX_JSB indicates that a
subprogram written in the VAX/VMS assembler: language
will be called with a JSB instruction and the
parameters passed in registers. The language_name
ASMVAX CALLS will provide an interface to a VAX
assembler language subprogram via the CALLS
instruction, with the parameters passed on the stack,
with the same parameter passing conventions used for
calling Ada subprograms.

The user must ensure that an assembly-language body

container for this specification exists in the program
library before linking.

F.2.1 Language-defined Pragmas F-03

Version 4.5 ALS/N Reference Handbook
29 March 1991

pragma OPTIMIZE (argqg):

This pragma is effective only when the "OPTIMIZE"
option has been given to the compiler. The argument is
either TIME or SPACE. If TIME is specified, the
optimizer concentrates on optimizing code execution
time. If SPACE is specified, the optimizer
concentrates on optimizing code size.

pragma PRIORITY (arg)l:;

The PRIORITY argument is an integer static expression
value of predefined integer subtype PRIORITY. The
pragma has no effect in a location other than a task
(type) specification or outermost declarative part of a
subprogram. If the pragma appears in the declarative
part of a subprogram, it has no effect unless that
subprogram is designated as the "main" subprogram at
link time.

pragma SUPPRESS (arg{,arg]):

Pragmas to suppress OVERFLOW_CHECK will have no effect
for operations of integer types.

A SUPPRESS pragma will have effect only within the
compilation unit in which it appears, except that a
SUPPRESS of ELABORATION_CHECK applied at the
declaration of a subprogram or task unit will apply to
all calls or activations.

pragma MEMORY_SIZE;

This pragma is ignored and a WARNING diagnostic is
issued.,

pragma STORAGE_SIZE:;

This pragma is ignored and a WARNING diagnostic is
issued.

pragma SYSTEM_NAME;

This pragma is ignored and a WARNING diagnostic is
issued.

F-04 F.2.1 Language-defined Pragmas

ALS/N Reference Handbook Version 4.5
. 29 March 1%91
F.2.2 Implementation-defined Pragmas
The following is the only implementation-defined pragma:
pragma TITLE (arg):
This is a listing control pragma. It takes a
single argqument of type string. The string
specified will appear on the second line of
each page of the source listing produced for
the compilation unit within which it appears.
The pragma should be the first lexical unit
to appear within a compilation unit

(excluding comments). If it is not, a
warning message is issued.

F.2.3 Scope of Pragmas

The scope of pragmas is as described in the Ada Language
Reference Manuzli except as noted kelow:

MEMORY_SI7~ No scope, but a WARNING diagnostic is generated.
PAGE - ..¢ scope.

STORAGE_SIZE - No scope, but a WARNING diagnostic is generated.
S1STEM_NAME - No scope, but a WARNING diagnostic is generated.

TITLE - The compilation unit within which the pragma occurs.

F.2.3 Scope of Pragmas F-05

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.3 Attributes

There is one implementation-defined attribute in addition to
the predefined attributes found in Appendix A of the Ada Language
Reference Manual.

X’DISP

A value of type UNIVERSAL INTEGER that
corresponds to the displacement that is used
to address the first storage unit occupied
by a data object X at a static offset within
an implemented activation record.

This attribute differs from the ADDRESS
attribute in that ADDRESS supplies the
absolute address while DISP supplies the
displacement relative to some base value
(such as a stack frame pointer). It is the
user’s responsibility to determine the base
value relevant to the attribute.

The following notes augment the langquage-required definitions
of the predefined attributes found in Appendix A of the Ada
Language Reference Manual.

T/MACHINE_EMAX is 127.

T/MACHINE_EMIN is -127.

T/MACHINE_MANTISSA if the size of the base type T is 32,
MACHINE_MANTISSA is 24.
if the size of the base type T is 64,
MACHINE_MANTISSA is 56.

T’MACHINE_OVERFLOWS is true.

T’MACHINE_RADIX is 2.

T’MACHINE_ROUNDS is false.
F.4 Predefined Language Environment

The predefined Ada language environment consists of the
packages STANDARD and SYSTEM described below.

F-06 F.4 Predefined Language Envircnment

ALS/N Reference Handbook Version 4.
29 March 19¢.
F.4.1 Package STANDARD
The Package STANDARD contains the following definitions in
addition to those specified in Appendix C of the Ada Language
Reference Manual:
-~ For this implementation, there is no corresponding body.
type BOOLEAN is (FALSE,TRUE); for BOOLEAN'’SIZE use 1;
-- The universal type UNIVERSAL_INTEGER is predefined for Ada.
type INTEGER is range -32_768 .. 32_767; .
type LONG_INTEGER is range -2_147_483_648 .. 2_147_483_647;
-~ The universal type UNIVERSAL_REAL is predefined for Ada.
type FLOAT is digits 6 range
- (2#0.1111_ 1111 1111 1111 _1111_14#E127) ..
(2%#0. 1111 llll 1111 llll 1111 _1%E127);
type LONG_FLOAT is digits 9 range
-(2#0. 1111_1111_1111_ 1111 11311 1111 1111 _111#E127) ..
(2#0. 1111 1111 1111 1111 1111 1111 1111 _1114E127);
-- Predefined subtypes within the Ada Language:
subtype NATURAL 1is INTEGER range 0 .. INTEGER’LAST; -- 32_767
subtype POSITIVE is INTEGER range 1 .. INTEGER'’LAST; -- 32_767
subtype LONG_NATURAL is LONG_INTEGER
range 0 .. LONG_INTEGER’LAST;
subtype LONG_POSITIVE is LONG_INTEGER
range 1 .. LONG_INTEGER’LAST;
-- ?redefined STRING type within the Ada Language:

type STRING is array (POSITIVE range <>} of CHARACTER;
pragma PACK(STRING):; °

-- The type DURATION is predefined for use with Ada DELAY.

type DURATION is delta 2.0 ** (-14)
range ~-131_072.0 .. 131_072.0 =~ 2.0 ** (-14)

-~ The predefined operators for the type DURATION are the same
-- as for any fixed point type within the Ada language.

F.4.1 Package STANDARD F-07

Version 4.5 ALS/N Reference Handbook

29

March 1991

F.4.2 Package SYSTEM

Within the various implementations, no corresponding package

body is required for the package SYSTEM. The package SYSTEM is

as follows:

type ADDRESS is new LONG_INTEGER;

type NAME is (Adavax, Ada_L, Ada_M):

SYSTEM_NAME : constant NAME := AdaVAX;

STORAGE_UNIT : constant := 8;

MEMORY_SIZE : constant := 2#%#*30 - 1;
-- System-Dependent Named Numbers:

MIN_INT : constant = =(2%%31);

MAX INT : constant := (2**31)-1;

MAX DIGITS : constant := §;

MAX MANTISSA : constant := 31;

FINE_DELTA ¢ constant := 2.0%*(-31);

TICK ¢ constant := 0.01;
-~ Other System-Dependent Declarations

subtype PRIORITY is INTEGER range 1l..15;
-- The following exceptions are provided as a "ccnvention"
-- whereby the Ada program can be compiled with all implicit
-- checks suppressed (1.e., pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate
-- exception raised when required, and then the exception is
-- either handled or the Ada program terminates.

ACCESS_CHECK : exception;

DISCRIMINANT CHECK : exception:;

INDEX_CHECK : exception;

LENGTH_CHECK : exception;

RANGE_CHECK : exception:;

DIVISION_CHECK : exception;

OVERFLOW_CHECK : exception;

ELABORATION_CHECK : exception:

STORAGE_CHECK : exception;
-- The following exceptions provide for (1) Ada programs that
-- contain unresolved subprogram calls and (2) VAX/VMS
-- system~-level errors.

UNRESOLVED_REFERENCE : exception;

SYSTEM_ERROR : exception;
F-08 F.4.,2 Package SYSTEM

ALS/N Reference Handbook Version 4.5
29 March 1991

F.5 Character Set

Ada compilations may be expressed using the following
characters, in addition to the basic character set:

lover case letters:
abcdefghijklmnopgqrstuvwxyz
special characters:
! s 3?2 e [| e O

The following transliterations are permitted (see Paragraph 2.10
of the Ada Language Reference Manual):

a. Exclamation mark for vertical bar;
b. Colon for sharp:; and
c. Percent for double_gquote.

F.5 Character Set ' F-09

Version 4.5 ALS/N Reference Handbook
29 March 1991
F.6 Declaration and Representation Restrictions

Declarations are described in Chapter 3 of the Ada Language
Reference Manual. Representation specifications are described in
Chapter 13 and discussed here.

In the following specifications, the capitalized word SIZE
indicates the number of bits used to represent an object of the
type under discussion. The upper case symbols D, L, and R
correspond to those discussed in Section 3.5.9 of the Ada
Language Refe ":nce Manual.

F.6.1 1Integer Types
Integer types are specified with constraints of the form:
RANGE L..R

where:
R <= SYSTEM.MAX_ INT & L >= SYSTEM.MIN_INT

For an integer type, length specifications of the form:
FOR t'’SIZE USE n;

may specify integer values n such that n is in 2..32,
R <= 2**(n=1)=-1 & L >= =2%**(n-1);

or else such that
R <= (2**N)-1 & L >= 0

and N is in 1..31.

For a stand-alone object of integer type, a default SIZE of 16
is used when: -

R <= 2**]15-1 & L >= 2%*15
Otherwise a SIZE of 32 is used.
For components of integer types within packed compocsite

objects, the smaller of the default stand-alone SIZE or the SIZE
from a length specification will be used.

F-10 F.6.1 Integer Types

ALS/N Reference Handbook " Version 4.5
29 March 1991
F.6.2 Floating Types
Floating types are specified with constraints of the form:

DIGITS D

where D is an integer value in 1 through 9.

For floating point types, length specifications of the form:
FOR t’SIZE USE n;

are permitted only when the integer values N = 32 when D <= §,
or N = 64 when D <= 9,

When no length specification is provided, a size of 32 is used
when D <= 6; 64 when D is 7 through 9.
F.6.3 Fixed Types
Fixed types are specified with constraints of the form:
delta D range L..R
where: '
max (abs(R), abs(L)) < 2#%%31-1
" Tactual_delta
The actual delta defaults to the largest integral power of 2
less than or equal to the specified delta D. (This implies
that fixed point values are stored right-aligned.)
For fixed point types, length specifications of the form:
for T’/SIZE use N;
are perritted only when N in 1 .. 32, if:

R - actual_delta <= 2**(N-1)-1 * actual_delta

and

L + actual_delta >= =-2**(n-1) * actual)delta
or

R - actual_delta <= 2**(N)-1 * actual_delta
and

F.6.3 Fixed Types F-11

Version 4.5 ALS/N Reference Handbook
29 March 1991

L>0

For stand-alone objects of fixed point type, a default size of 32
is used. For components of fixed point types within packed
composite objects, the size from the length specification will be
used.

Specifications of the form:

for T’/SMALL use X;
are permitted for any value of X, such that X <= D. X must be
specified either as a base 2 value or as'a base 10 value. Note

that when X is specified as other than a power of 2, actual_delta
will still be the largest integreal power of two less than X.

F-12 F.6.3 Fixed Types

ALS/N Reference Handbook Version 4.5
29 March 1991

F.6.4 Enumeration Types

In the absence of a representation specification for an
enumeration type T, the internal representation of T’FIRST = 0.
The default SIZE for a stand-alone cobject of enumeration type T
will be the smallest of the values 8, 16, or 32, such that the
internal representation of T’/FIRST and T/LAST both falls within
the range:

-2*% (T’SIZE-1) .. 2%*(T’SIZE-1)-1.
For enumeration types, length specification of the form:
for T’SIZE use N;
and/or enumeration representations of the form:
for T use <aggregate>;
are permitted for N in 2..32, provided that the internal
representatlons and the SIZE conform to the relationship

specified above.

Or else for N in 1..31, is supported for enumeration types
and provides an internal representation of:

T’FIRST>=0 .. T’LAST<=2%%(T/SIZE)-1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE, or the SIZE
from a length specification will be used.

Enumeration representation on types derived from the

predefined type BOOLEAN will not be accepted, but length
specifications will be accepted.

F.6.4 Enumeration Types F-13

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.6.5 Access Types
For access type, T, length specifications of the form:
for T’SIZE use N;

will not affect the run-time implementation of T, therefore N =
32 is the only value permitted for SIZE, which is the value
returned by the attribute.

For collection size specifications of the form:
for T/STORAGE_SIZE use N;

any value of N is permitted (and that value will be returned by
the attribute call). The collection size spec1f1catlon will

affect the implementation of T and its collection at run-time by
limiting the number of objects for type T that can be allocated.

F.6.6 Arrays and Records
For arrays and records, length specifications of the form:
for T’SIZE use N;

may cause arrays and records to be packed, 1f required, to
accommodate the length specification. If the SIZE specified is
not large enough to contain all possible values of the
components, a diagnostic message of severity ERROR is issued.

The PACK pragma may be used to minimize wasted space, if any,
between components of arrays and reccrds. The pragma causes the
type representatlon to be chosen such that storage space
requ1rements are minimized at the possible expense of data access
time and code space.

For records, a component clause of the form:
at N (range i..j]

specifies the allocation of components in a record. Bits are
numbered 0..7 from the right and bit 8 starts at the right of the
next higher-number byte. Each location specification must allow
at least X bits of range, where X is large enough to hold any
value of the subtype of the component being allocated.

Otherwise, a diagnostic message of severity ERROR is generated.

F-14 F.6.6 Arrays and Records

ALS/N Reference Handbook Version 4.5
29 March 1891
For records, an alignment clause of the form:
at mod N

specify alignments of N bytes for 1 byte, 2 bytes (VAX "word"),
and 4 bytes (VAX "long_word").

If it is determinable at compilation time that the SIZE of a
record or array type or subtype maybe outside the range of
STANDARD. LONG_INTEGER, a diagnostic message of severity WARNING
is generated. Declaration of an object of such a type or subtype
would raise NUMERIC_ERROR when elaborated. Note that a
discriminant record or array may never raise the NUMERIC_ERROR
when elaborated based on the actual discriminant provided.

F.6.7 Other Length Specifications

Length Specifications are described in Section 13.2 of the
Ada Language Reference Manual.

A length specification for a task type T, of the form:
for T’/SIZE use N;

specifies the number of bits to be allocated for objects of the
task type T. For the VAX/VMS target, N must be defined:

N =8 * (109 + 13 * number_of_entries)

Where number_of_entries is the number of entries declared in the
task type specification.

F.6.7 oOther Length Specifications F-15

Version 4.5 ALS/N Reference Handbook
29 March 1991 .

F.7 System Names

Refer to Section 13.7 of the Ada Language Reference Manual
for a discussion of package SYSTEM.

The available system names are "AdaVAX", "“Ada_L", and
"Ada_M"; the system name is chosen based on the targets
supported, but it can not be changed. 1In the case of VAX/VMS,
the system name is "AdaVAX".

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manual
for a discussion of Address Clauses. Address clauses for objects
and code are allowed by the VAX/VMS target, but they have no
effect beyond changing the value returned by the ’‘ADDRESS
attribute call.

The Run-Time Support Library (RSL) for the VAX/VMS target
does not handle hardware interrupts. All hardware interrupts are
handled by the VAX/VMS operating system. However, the VAX_VMS
target uses asynchronous system traps (ASTs) in a manner similar
to interrupt entries.

F.9 Unchecked Conversions

Refer to Section 13.10.2 of the Ada Language Reference Manual
for a description of UNCHECKED_CONVERSION.

A program is erroneous if it performs UNCHECKED_CONVERSION
when the source and target have different sizes.

F.10 Restrictions on the Main (Sub)Program

Refer to Section 10.1 of the Ada Language Reference Manual
for a discussion of the main (sub)program. The subprogram
designated as the main (sub)program cannot have parameters. The
de51gnatlon as the main (sub)program of a subprogram whose
spec1f1catlon contains a formal_part results in a diagnostic of
severity ERROR at link time.

The main (sub)program can be a function, but the return value
will not be avallable upon coupletion of the main (sub)program’s
execution. The main (sub)program may not be an imported
subprogram.

F-16 F.10 Restrictions on the Main (Sub)Program

ALS/N Reference Handbook Version 4.5
29 March 1991

F.11 Input/Output

Refer to Chapter 14 of the Ada Language Reference Manual for
a description of Ada Input/Output (I/0).

The RSL I/O subsystem provides the following packages to the
user: TEXT_I10, SEQUENTIAL_IO, DIRECT IO, and IOW_LEVEL 10. These
packages execute in the context of the an individual Ada task
making the I/0O request. Consequently, all of the code that
process an I/0 request on behalf of the Ada task executes
sequentlally The package IO_EXCEPTIONS defines all of the
exceptions needed by the packages TEXT_IO, SEQUENTIAL_ IO, and
DIRECT_IO. The specification of this package is given in Section
14.5 of the Ada LRM. This package is visible to all of the
constituent packages of the RSL I/O subsystem so that appropriate
exception handlers can be inserted.

High-level I/O in AdaVAX is performed solely on external
files. No allowance is provided in the RSL I/O subsystem for
memory resident files (i.e., files which do not reside on a
perlpheral device). This is true even in the case of temporary
files. With the external files residing on peripheral devices,
only the various VAX/VMS quotas restricts the number of files
that may be open on an individual peripheral device.

Section 14.1 of the Ada LRM states that all I/O operations
are expressed as operations on objects of some file type, rather
than in terms of an external file. File objects are implemented
in AdaVAX as access objects that point to a data structure call
the File Control Block (FCB). This FCB lS defined internally to
each high-level I/0 package; its purpose is to represent an
external file. The FCB contains all of the I/O-specific
information about an extermal file that is needed by the
high-level packages to accomplish the requested I/0 operation.

F.11l.1 Naming Extermal Files
The naming conventions for external files in AdaVvAX are of
particular 1mportance to the user. An external file name for Ada

I/0 can be any valid path name (e.g.,
disk:(directories]jfilename.ext) in the VAX/VMS environment.

F.11.1 Naming External Files F-17

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.11.2 The FORM Specification for External Files

The FORM specification for external Files created by TEXT_IO
include the default (i.e., the NULL string) and the two shorthand
strings: "PASS_ALL" or "LOG_FILE". The only FORM specification
for external files created by SEQUENTIAL_ IO and DIRECT_IO is the
default of the NULL string. Note that opening the external file
after its creation still utilizes the file attributes assigned to
the file when it was created and, therefore, the only legal FORM
specification is the NULL string.

An allowable FORM string in TEXT_IO has syntax defined by the
grammar is shown in Table F-1 below. The tokens of the grammar
may be separated by any combination of blanks (’ ‘) and
horizontal tab (ASCII.HT) characters. The FORM parameter is not
case sensitive, but repetition of a file_attribute_item is not
allowed. The record format values valid with the Ffile
organization SEQUENTIAL are: STREAM, STREAM CARRIAGE_RETURN,
STREAM_LINE_FEED, and UNDEFINED. Note that the
VARIABLE FIXED ﬁONTROL record format is not valid with the
INDEXED file organization.

In TEXT_IO, the following default FORM value is assumed when
the FORM parameter is the NULL string:

"RECORD_FORMAT := VARIABLE, " &
"FILE ORGANIZATION := SEQUENTIAL, " &
"CARRIAGE CONTROL := CARRIAGE_RETURN"
The "PASS_ALL" FORM parameter is equivalent to the string:
"RECORD_FORMAT := VARIABLE, " &
"FILE ORGANIZATION := SEQUENTIAL, " &
“CARRIAGE CONTROL := NONE"
The "LOG_FILE"” FORM rarameter is equivalent to the string:
"RECORD_FORMAT := VARIABLE FIXED_CONTROL, " &

"FILE ORGANIZATION := SEQUENTIAL, " &
"CARRIAGE_CONTROL := PRINT"

F-18 F.11.2 The FORM Specification for External Files

ALS/N Reference Handbook Version 4.5
29 March 1991

et it S +
| Left Hand Side Right Hand Side |
Tt e — +
form_string :== "® | ghorthand_string |
file_attribute_list
shorthand_string :== PASS_ALL | LOG_FILE
file_attribute_list i== file_attibute_item

{,fiTe_attribute_item)

file_attribute _item :== record_format_string
file organlzatlon string |
carriage_control_string

record_format_string :== RECORD_FORMAT .= record_format
reccrd_format t== VARIABLE | FIXED | STREAM |
VARIABLE_FIXED_CONTROL |

STREAM_CARRIAGE_CONTROL |
STREAM_LINE_FEED | UNDEFINED

file_organization_string :== FILE_ORGANIZATION :=
file organization

file_organization :== SEQUENTIAL | RELATIVE |INDEXED

carriage_control_string :== CARRIAGE_CONTROL :=
carriage_control

carriage_control :== FORTRAN | CARRIAGE RETURN |
PRINT | NONE

Table F-1 - FORM String Grammar

F.11.2 The FORM Specification for External Files F-19

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.11.3 External File Processing

Section 14 of the Ada LRM defines two kinds of access to
external files: sequential access and direct access. A file
object used for sequential access is call a sequential file, and
one used for direct access is called a direct file. Three file
modes are defined: IN_FILE, OUT_FILE, and INOUT_FILE. All three
file modes are allowed for direct files, whereas only the modes
IN_FILE and OUT_FILE are allowed for sequential files.

AdaVAX takes the view that files of mode IN_FILE already
contain data, making them suitable for reading, “while files of
mede CUT_FILE are empty, maklng them suitable for writinag. Files
of mode INOUT FILE may contain data or may be empty, making them
suitable for readlng or writing. An attempt to create a file of
mode IN_FILE will raise the exception USE_ERROR since a newly
created file is empty (i. e., not suitable for reading). Stated
more simply, AdaVAX restricts the creation of files to those of
mode OUT_FILE or INOUT_FILE.

Processing allowed on external files is determined by the
access controls set by the owner of